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Critical wetting of a class of nonequilibrium interfaces: A computer simulation study
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Critical wetting transitions under nonequilibrium conditions are studied numerically and analytically by
means of an interface-displacement model defined by a Kardar-Parisi-Zhang equation, plus some extra terms
representing a limiting, short-ranged attractive wall. Its critical behavior is characterized in detail by providing
a set of exponents for both the average height and the surface order-parameter in one dimension. The emerging

picture is qualitatively and quantitatively different from recently reported mean-field predictions for the same
problem. Evidence is shown that the presence of the attractive wall induces an anomalous scaling of the

interface local slopes.

DOI: 10.1103/PhysRevE.77.011116

I. INTRODUCTION

Much scientific effort has gone into the study of equilib-
rium wetting since, in the late 1970s, Cahn introduced the
idea that it can be described as a phase transition [1]. Among
the various theoretical approaches developed, interface dis-
placement models have proved particularly useful [2]. Within
this perspective, the focus is on the interface that separates
two coexisting (bulk) phases confined by a wall or substrate,
and the wetting transition corresponds to the unbinding of
the interface from the wall. This happens upon a rise of the
temperature when the wall adsorbs preferentially one of the
phases leading to a divergence of the thickness of the ad-
sorbed layer. The dynamics of such an interface can be de-
scribed at a coarse-grained level by the following continuum
stochastic growth equation [3]:
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Here, h(x,1) is the local height of the interface from the wall,
the regions y>h(x) and y<h(x) corresponding to the two
bulk phases. D is the interfacial tension coefficient and 7 is a
Gaussian white noise with zero mean and variance
(p(x,0)npx',t")=208(x—x")8(t—¢") that mimics thermal
fluctuations. V(h) accounts for the net interaction between
the wall and the interface and its form depends on the nature
of the forces between the particles in the bulk phases and
with the wall, its rigorous derivation from microscopic
Hamiltonians being far from trivial. If all the interactions are
short ranged, one may take in the limit of large / at phase
coexistence [2]

V(h) = f dx(b(T)e‘h(X)+§e‘2h(x)), (2)

where T is the temperature [4]. The amplitude ¢>0 is a
repulsion whereas b(T) vanishes linearly with the mean-field
wetting temperature, 7,,, as T—T,,, and can represent either
an effective repulsion or attraction between the interface and
the wall (see Fig. 1). At sufficiently low temperatures, b
<0, the equilibrium thickness of the wetting layer as given
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by the stationary configurational average () is finite (pinned
interface). This corresponds to an attractive potential (see
Fig. 1). As the temperature is raised the potential becomes
less attractive and eventually, above a certain value b=b,, it
no longer binds the interface and () diverges. Within mean-
field approximation, ignoring spatial correlations, () follows
from dV(h)/dh=0, whereby one finds for an attractive wall
(b<0) (h)=In(—c/b) and, consequently, a critical wetting
transition takes place as b— b,,=0. Recently, effective short
ranged, equilibrium critical wetting showing mean-field-like
exponents seems to have been experimentally observed [5].

Extensions of equilibrium, interface displacement models
to nonequilibrium conditions have only been recently ad-
dressed and constitute a topic of ongoing research activity
[6,7]. Supplementing Eq. (1) with the most relevant nonequi-
librium nonlinear term \(V#)? [8], leads to a natural gener-
alization of Eq. (1) that assumes that the velocity of the
interface depends on its local slope,

dh(x,1)

P DV2h+ N(Vh)? + be™ + ce™ + q(x,1), (3)

which is a Kardar-Parisi-Zhang (KPZ) interface [8] interact-
ing via a short-ranged potential with a wall. KPZ interfaces
have a nonzero average velocity, v=\{(Vh)?), and hence
steady-state interfaces move on average thereby favoring one

V(h) A

=y

b<0

FIG. 1. (Color online) Mean-field binding potential for positive
and negative values of b. For <0 the potential is attractive, ex-
hibiting a well near the wall.
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FIG. 2. (Color online) Schematic phase diagram for A <0 and a
lower wall in the a-b plane [Eq. (4)]. The vertical line corresponds
to the critical value a=a,., and the arrows denote the different types
of transitions explained in the text. Path 1: Complete wetting (upon
approaching a.). Path 2: Nontrivial depinning transition at a*(b).
Path 3: First-order pinning transition. Path 4: Multicritical complete
wetting. Path 5: Critical wetting.

of the phases over the other. Wetting, on the other hand, by
definition occurs at coexistence, i.e., zero average velocity of
the free (no wall) interface. This agrees with the thermody-
namic picture that at bulk coexistence any arbitrary fraction
of the system may be in one phase, with the remainder in the
other. Therefore, a constant a.=—v needs to be included in
Eq. (3) to study wetting transitions driven by the wall. The
nonequilibrium analog of equilibrium critical wetting corre-
sponds to the depinning transition at a. as b—b,,. Clearly,
for A=0 and a.=0, the model reduces to the equilibrium one.
In equilibrium, a constant force term, a, in the interfacial
equation measures the deviation from bulk coexistence (i.e.,
it represents the chemical potential difference between the
two phases) while here it plays a similar role by balancing
the force exerted by the KPZ nonlinearity on the tilted parts
of the interface, thereby guaranteeing that the average veloc-
ity of the free interface is zero.

Owing to the lack of h«—h symmetry of the KPZ dy-
namics, it is necessary to specify either the relative position
of the wall with respect to the interface, upper or lower, for a
fixed sign of \, or reversely, the sign of A after a wall posi-
tion has been arbitrarily chosen. In earlier studies of non-
equilibrium (complete) wetting (see below), these two differ-
ent physical situations lead to the existence of by-now-well-
documented two different universality classes, called
multiplicative noise 1 (MNI1) and multiplicative noise 2
(MN?2), respectively [9]. Here, we take A <0 in Eq. (3) (i.e.,
the critical wetting counterpart of MN1) which has shown to
have a much richer phenomenology than that of A>0 in
other studies of nonequilibrium wetting [9,10]. The analysis
of the case >0 will be addressed elsewhere.

Thus defined, this model system, arguably the simplest
nonequilibrium one, has served for the study of universality
issues in nonequilibrium wetting. In particular, by fixing b
>b,, i.e., in the presence of a repulsive wall, and letting a
—a_ (path 1 in Fig. 2) nonequilibrium complete wetting
transitions (MN1) were investigated. For b<b,, (attractive
wall) and varying a there is a rich phenomenology: the
pinned and the depinned phases lose their stability at differ-
ent values of a, giving rise to a continuous depinning transi-
tion at a*(b) > a in the directed-percolation universality class
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(see Fig. 2, path 2) [11], and a first-order phase transition
along path 3, at a=a,. In the broad interval a.<a<a"(b)
both phases coexist (see [9] and references therein). Tricriti-
cal behavior along path 4 was analyzed by Ginelli et al. [12],
and a preliminary study of nonequilibrium critical wetting
(path 5) was presented in [13].

In this paper we investigate numerically and analytically
nonequilibrium critical wetting (path 5 in Fig. 2) as defined
by Eq. (3). The focus will be on one-dimensional systems
only. Higher system dimensionalities were studied in [10] by
a mean-field analytic approximation to Eq. (3) which re-
vealed the existence of three different regimes of scaling
behavior. Their connection with our findings (or the lack of
it) is discussed in the last section.

II. MODELS AND OBSERVABLES

Our continuous model is defined by the stochastic growth
equation

oh(x,1)

P DV?h+N(Vh)? +a,+be™" + ce™ + 5(x,1),

(4)

with, as explained above, a,=—\{(Vh)?). At the critical wet-
ting transition, i.e., as b approaches b,, from below, the av-
erage stationary thickness of the wetting layer diverges con-
tinuously as (k) ~ |b—b,,|Pr, where B, is a critical exponent.
At b=b,, {h(t))~1t% for asymptotically long times. Two
other exponents we study are the dynamic and the correlation
length exponents, z and v, respectively, defined through their
usual expressions &(t)~t'?, &~|b-b,|™”, where £ is the
correlation length. They are related to the previous ones by
the scaling form 6,=p,,/zv.

Some of these exponents may be written in terms of
known KPZ exponents. In particular, since at b=>b,, the in-
terface is asymptotically free, the dynamic exponent retains
its one-dimensional free KPZ value z=3/2 [7].

Also, as we illustrate now, 6, is given by the exponent
characterizing the growth of the interfacial width in the KPZ,
W(t)~t%, and therefore, 0,=0w=1/3 in one dimension.
This can be understood as follows: interfacial fluctuations
are cutoff owing to the presence of the wall, as a result of
which there is an effective fluctuation-induced repulsion be-
tween the wall and the interface. The latter can be estimated
by noting that the wall makes itself felt when the mean in-
terfacial separation (h) is of the same order as the average
extent of the interface fluctuations, éh. From 6k~ 55, where
{ is the usual KPZ roughness exponent, and the definition of
v we find that the effective repulsion force has the form
h=Y¢" and is therefore long ranged in d=1 where {=1/2
>(. Comparing this force with the deterministic one in the
Langevin equation (4), which is short ranged, it is straight-
forward to conclude that in d=1 fluctuations dominate the
unbinding of the interface. As fluctuations are governed, in
the regime where the interface is asymptotically free, by the
growth exponent of the KPZ, then 6,=1/3. This result has
been verified in our computer simulations (see below). Note
that this, as well as any other exponent computed exactly at
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the critical point, is path independent and, therefore, holds
also for complete wetting.

Of more interest is the behavior of the surface order pa-
rameter defined as (e™") or, equivalently as the density of
local contacts between the interface and the wall. Indeed,
considering Eq. (4) with D=-\, the change of variables &
=-In n leads to

on(x,r)

P =DV?n—an—bn®—cn’ +ny(x,1), (5)

which is a multiplicative noise Langevin equation for the
surface order parameter [9] to be interpreted in the Stra-
tonovich sense [14]. For sufficiently low values of b<<b,, the
interface remains pinned and the stationary density of locally
pinned sites at the wall is high (n=<1). As the transition is
approached (increasing b following path 5 in Fig. 2), the
stationary density of pinned segments goes to zero in a con-
tinuous manner as {n(b,t=))~|b—b . At b=b,, the in-
terface depins and therefore (h(z)) diverges and (n(z)) van-
ishes with the characteristic exponent {(n(b=b,, 1))~ 1,
Obviously, as said before, 6, is common to paths 4 and 5 in
Fig. 2, and the value 6,=0.5(1) has been reported previously
[12]. Here we focus on the determination of the path-
dependent exponents S, 3,, and v. Before proceeding fur-
ther, we refer the reader to [15] for a detailed analysis of the
critical behavior of the above observables in equilibrium
critical wetting.

To study numerically the model defined above, owing to
well-documented numerical instability problems [16], it is
more convenient to integrate numerically Eq. (5) than the
equivalent form Eq. (4). Equation (5) can be efficiently inte-
grated by means of a recently introduced split-step scheme
specifically designed to deal with Langevin equations with
nonadditive noise [17]. Setting D=-A=0.1, o=1 we can use
the result a.=0.143 668(3) obtained from previous investiga-
tions of the analogous nonequilibrium complete-wetting
transition [18]. As will be illustrated below, estimates of the
critical exponents are severely hindered by uncertainties in
the value of a,.

To circumvent this problem and to confirm universality
we have carried out simulations of a discrete interfacial
growth model which (i) in the absence of walls is known to
belong to the KPZ universality class, (ii) has been success-
fully used in nonequilibrium complete wetting analyses [19]
and, most importantly, (iii) allows for an exact determination
of the velocity of the free interface, and therefore permits to
extract the critical exponents with good accuracy. To be more
specific, we consider a single-step-plus-wall model (SSW)
defined as follows. At time ¢ interface positions above sites i
of a one-dimensional line of length L are given by integer
height variables £,(i), satisfying the solid-on-solid constraint
|n,(i)=h,(i+1)|=1. Initially, we take hy(2i)=0 and h(2i
+1)=1. New height configurations are generated by choos-
ing at random a site i and growing it to k(i) — h,(i)+2 if and
only if a local minimum existed at i. It can be shown that this
rule generates a KPZ-like interface with A=-1/2 moving
with an asymptotic long time, average velocity v=(1+L)/
(2L) [20]. Aditionally, taking advantage of the exact knowl-
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edge of v, the interface is globally pulled down by one unit
every L/v growth trials, in such a way that the interface has
zero average velocity. A wall at =0 is then introduced by
precluding the interface from overtaking the wall that is be-
hind it. This is achieved by implementing the previous glo-
bal, downwards movement as h,(i)=|h,(i)— 1| for each i. Fi-
nally, in order to implement an attractive wall, the growing
rates at the bottom layer are reduced from 1 to 1—-¢g with 0
=g=1. The parameter g represents the short-ranged attrac-
tion exerted by the wall on the interface. If g=1 no growth is
possible at the local minima located at the wall and hence an
interface at the wall does not move, whereas if g=0 the
short-range attraction is switched off.

In all, the SSW algorithm is as follows: (i) A site i is
randomly chosen and grown from k(i) to h(i)+2 if a local
minimum exists at i [h(i+1)+h(i—1)—2h(i)=2]. This is
done with probability 1 if 4(i) >0, or with probability 1—g¢ if
h(i)=0, with 0=g=1. No action is taken if i does not cor-
respond to a minimum. Time is increased by 1/v after L of
such attempts. (i) Every L/v growth trials h(i)=|h(i)—1| for
each i. Given that L/v is generally not an integer, this is done
by using |L/v] with probability L/v—|L/v] and |L/v]+1 with
probability |L/v]+1-L/v, where |---| denotes the integer
part. Periodic boundary conditions are imposed. By tuning
the parameter ¢ a critical wetting transition is observed.

III. NUMERICAL RESULTS

We next summarize our main findings for both the dis-
crete model (SSW) and the stochastic differential equation
(SDE) (5).

To determine the critical points, ¢,, (for the SSW) and b,,
(for the SDE), we take a system size as large as possible
(L=2"7 here), plot the order parameter (n(f)) versus ¢ in a
double logarithmic scale, and look for the separatrix between
curves converging to a constant value and those bending
downward (not shown). In this way, the critical values g,
=0.4445(5) (SSW) and b,=-1.0815(9) (SDE) are deter-
mined. In Fig. 3 results are shown in In-In for the time decay
of the order parameter {n(f)) at the critical point of the SSW
model for different system sizes ranging from L=27 to L
=2'7. From the slope of a straight-line fit to the lowest curve
one finds 0zsw=0.49(2) [02DE=0.50(5) for the SDE; not
shown], where the error is computed by comparing the
slopes corresponding to the upper and lower bounds of ¢,
(b,). The inset of Fig. 3 shows estimates of the crossover
times, ¢« (L), from time decay to saturation as a function of
the system size. Using ¢, (L) ~ L* we find the temporal expo-
nent values z55W=1.4(1), z5PE=1.3(2) (not shown), which
are in agreement with those previously reported in [12] fol-
lowing path 4 of Fig. 2, and compatible with the theoretical
considerations described above.

From the scaling of the saturation value at the critical
point, {ny(g=gq,,)) for different system sizes one can deter-
mine (see Fig. 4) B8,/ v=0.74(1) [ B,/ v=0.6(1) for the SDE].
A direct estimation of S, is also possible by measuring the
order-parameter stationary value for the largest available sys-
tem size upon approaching the critical point from below.
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FIG. 3. (Color online) Main: Time decay of the surface order
parameter at g=gq,, for simulations of the SSW model at system
sizes (from top to bottom) L=27, 28, 29,210 211 212 and 217 from
the lowest curve 0:5W=0.49(2). Inset: The crossover times to satu-
ration as a function of the system size lead to z5W=1.4(1). The
error bars indicate the estimated uncertainties in the crossing point
of fits of the initial decay and the saturating behavior to straight
lines, on the In-In plot.

This is shown in Fig. 5 again for both the SSW and the SDE.
We find 855V =1.50(9) and B;°F=1.46(6) which, along with
the obtained values for B,/v, yields ¥>W=2.0(2) and »°PE
=2.4(5) (note the relatively large error bar in this latter case).
These values supersede the early estimate ,=1.2 given in
[13].

The scaling properties of the mean interfacial separation
(h) can be determined analogously (we show results only for
the SSW model). The time growth of (h(z)) for the largest
system available L=2'7 yields 6}°"'=0.35(2) (see Fig. 6), in
reasonable agreement with the expected value 6,=1/3. The
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FIG. 4. (Color online) Main: The SSW saturation values of (n)
at criticality for several system sizes provide the exponent ratio
B,/ v=0.74(1). Inset: The same analysis for the SDE yields 0.6(1).
Note the difference in the magnitude of error bars, which corre-
spond to three standard deviations of the mean saturation values.
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FIG. 5. (Color online) Main: The In-In plot of the saturation
values of (n) for L=2'7 vs the distance to the critical point gives a
direct estimation of ﬁgswz 1.50(9) and (inset) ,BED E—1.46(6). Error
bars as in Fig. 4.

average saturation values are plotted in In-In as a function of
the system size in the inset of Fig. 6. From them we estimate
B,/ v=0.52(4) (compatible with KPZ scaling, as {=p,/v
=1/2). Estimations of z can be analogously obtained, but
they are rather noisy because of the uncertainty in determin-
ing the saturation value. Also, a direct estimation of 3, can
be obtained for the largest available size. This leads to
2SW:O.9(1) and BZDE:I.O(l) (see Fig. 7). Using the values
of B,/v and B, a third estimate for v=1.8(3) is obtained.

Finally, we have confirmed that for both models at the
tricritical point the width, W, of the interface grows with
time with an exponent compatible with that of the KPZ,
W(t) ~ %, with 6,=1/3, and saturates in finite system sizes
to a nonvanishing value given by W~ L™/~ L2 a5 in the
KPZ.

In summary, the exponent values determined above ap-
pear to be compatible with the set of simple rational numbers
0,=1/2,z=3/2, B,=3/2, v=2, 6,=1/3, and B,=1. For the
sake of comparison, the critical exponents at equilibrium
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FIG. 6. (Color online) Main: The In-In plot of the average dis-
tance to the wall vs time, yielding 923W=0.35(2). System sizes are
(from top to bottom) L=217, 212, 211 210 29 28 and 27, Inset:
Finite-size scaling of (hy(g=g,,)) indicating B,/v=0.52(4). All
values are for the SSW model. Error bars as in Fig. 4.
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FIG. 7. (Color online) Main: The scaling of the saturation value
of (hg) yields B;°V=09(1) for data collected from the SSW
model. Inset: A value ,BZDEzl.O(l) results for data collected from
the SDE. Error bars as in Fig. 4.

critical wetting are 6,=1/4, z=2, B,=1, v=2, 6,=1/4, and
B,=1 [21]. The coincidence in the numerical values of two
of them (the path dependent ones, B;, and v) is somehow
intriguing.

IV. THEORETICAL CONSIDERATIONS

It is instructive to compare the above results with those
obtained at high system dimensionalities from a self-
consistent, mean-field approximation to Eq. (5) [10]. In that
approximation, a sequence of three scaling regimes was re-
ported to exist depending on the relative importance of the
noise strength as compared to the spatial coupling. The first
two have a Gaussian character, while in the third regime, i.e.,
the strong noise one (in which the wetting temperature is
shifted away from zero) all moments, m;=(n*), for k
>2D/0*+1 scale with the same exponent, while simple
scaling m; ~mF is obtained for k=2D/c>+ 1. This is a rather
curious type of anomalous scaling not very different from
that observed in analogous mean-field approximations for
nonequilibrium complete wetting [22]. However, we have
verified numerically that in the one-dimensional system mo-
ments of arbitrary order scale as (n) itself, as happens in
other Langevin equations with multiplicative noise [9]. This
is a consequence of the large fluctuations occurring at d=1,
notwithstanding which it is possible to make some analytic
predictions, as we now discuss.

First, we explicitly show how the critical value of b is
depressed from its mean-field value b,=0 to b,,<0 once
fluctuations are included. Taking spatial and noise averages
in the stationary state of Eq. (4) for a generic value of a, and
denoting the average squared slope of the interface by s°
=((Vh)?), we obtain

a-s>+bn)+{n*=0, (6)

where, without loss of generality, we have taken D=\N=-1
and c=1. At coexistence a.=s, and hence s’—s>+b(n)
+(n%)=0. Additionally, in the pinned phase (i.e., (n) #0) s>
<s§, and therefore Eq. (6) has a solution only if 5<<0. Still,
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b,, could be 0, but by noting that on approaching the tricriti-
cal point along path 5 the moments of (n) scale in the same
way, (n)~(n*)~|b-b,|P, it is easy to see that b,#0 be-
cause otherwise the negative term b(n) would be subdomi-
nant in comparison with the positive (n?), and no solution
could exist for small b. Clearly, by continuity b,, cannot be
positive and hence b,,<0 ensues.

It is illuminating to show how a similar reasoning leads to
a more predictive analysis when applied to the analogous
complete wetting transition (path 1 in Fig. 2) known to be in
the MNI1 class. In that case, the condition a—ac+s§—s2
+b{n)=0 must be satisfied, with the negative term dau=a
—a, balancing the two positive terms s2—s> and b(n)
~|é&alP in the pinned phase. This implies that 8,>1 if a
solution for {(n) is to exist for small da [7]. Furthermore, by
noticing that if KPZ scaling is applicable, then sz—s2
~ £0-0 23], where { is the roughness exponent of a free
KPZ. Recalling that {=1/2 in 1d, immediately entails v=1
for complete wetting [7].

On the contrary, we have not been able to derive the value
of v for nonequilibrium critical wetting, nor does it seem
immediate that v=1 along path 4 as found numerically in
[12]. The main difference with the complete wetting case
appears to rest on the behavior of the slopes s°. According to
our measurements for Eq. (4), s*—s>~ |b—bWL1'51(2) for criti-
cal wetting (path 5) and s2—s>~|a—a,|*7*? for tricritical
complete wetting (path 4), pointing to an anomalous scaling
of the slopes, i.e., s>=((Vh)?) does not have the same scaling
dimension as [L~']![#]?, as happens in the complete wetting
case.

That sf—s2 scales along path 4 with an exponent less than
unity could have been anticipated from the condition |da|
—b,|da|Pr=52—s? at the tricritical point, implying s’—s’
~ | 6alPs with B,=1.

The exponent value B,=0.74(5) reported in [12] for the
multicritical complete wetting transition along path 4 (con-
firmed in our own measurements), along with 8,~1.5 for
critical wetting as referred to above, indicates that the
anomalous scaling of the slopes is ultimately controlled by
(B, in both cases, rather than by the roughness exponent of
the KPZ as in the complete wetting case. Notice the con-
stancy along paths 4 and 5 of the ratio B,/ v=0.75, which is
a property of the tricritical point and therefore must be inde-
pendent of the path.

The fact that the slopes acquire a scaling not directly de-
rivable from the free KPZ can be argued to be a consequence
of the effect of the potential well on the interface. Figure 8
shows snapshots of configurations A(x) that result from solv-
ing the SDE in the stationary state for different parameters
that correspond to approaching the critical points from dif-
ferent paths:

Panel (a) for (b=—-1.2<b,,, a=-0.25<a,), corresponds
with a situation slightly below the complete wetting (MN1)
transition (path 1 of Fig. 2).

Panel (b) for (b=b,,, a=-0.153<a,), slightly below the
multicritical complete wetting transition (path 4).

Panel (c) for (b=-1.3<b,,, a=a,), slightly below the
critical wetting transition (path 5).

The distances to the transition points are chosen so that
(h)=5 in all cases. Note the clear qualitative difference be-
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FIG. 8. (Color online) Snapshots of configurations h(x) as a
result from solving the SDE in the stationary state for (a) b=—1.2
<b,,, a=-0.25<a, (complete wetting), (b) b=b,, a=-0.153
< a, (multicritical complete wetting), and (c) b=-1.3, a=a, (criti-
cal wetting). The distances to the transition points are chosen so that
(h)=15 in all cases. In panels (b) and (c) patches of depinned inter-
faces are observed where n=0.

tween panel (a), for which standard scaling holds, and the
rest. Observe that in panel (c), the interface consists of
patches of essentially free KPZ interfaces separated by re-
gions of sites pinned by the potential well. It then seems
plausible to conclude that, following path 5, regions locally
trapped within the potential well develop slopes different
from that of a free KPZ (indeed, roughness is severely re-
stricted within the potential well) even at points arbitrarily
close to the tricritical point, thereby inducing an anomalous
scaling controlled by 8,. In panel (b), i.e., upon approaching
the tricritical point along path 4, the effect of the bounding
wall is less apparent as the potential well is marginally dis-
appearing at b=>b,, but a similar effect, induced by the po-
tential shape, should be at work in this borderline case.

V. SUMMARY AND DISCUSSION

We have investigated the universal properties of nonequi-
librium critical wetting transitions in one spatial dimension.
For that, we study effective interfacial models in the KPZ
universality class with A <0 bounded by a lower wall, and
determine the average height (%) and the surface order pa-
rameter (n)={e™").

A scaling analysis leads to the prediction z=3/2 and a
time behavior of the average height governed by the growth
exponent of the free KPZ, i.e., (h(f))~t"?. These results
have been verified numerically. Other exponents have been
computed from extensive numerical simulations of the
Langevin equation and a discrete model in the same univer-
sality class that enables a more precise numerical analysis, as
a result of which we find v=2, 8,=1, and (8,=3/2, sug-
gesting that actually the exponents take rational values (see
Table I). Interestingly enough, the first two values agree with
those of equilibrium critical wetting.

Simple analytical arguments allow us to show that the
critical value of the control parameter b is depressed by fluc-
tuations from its mean-field value b,,=0 to b,,<0. We have
also shown that in critical wetting, as well as in multicritical
complete wetting, the average interface slopes do show
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TABLE 1. Summary of the critical exponents for nonequilib-
rium, critical wetting transitions with short-range forces. Results are
shown for the discrete model SSW, the stochastic differential equa-
tion (SDE), and from other sources when available.

Exponent SSW SDE Others
Z 1.4(1) 1.3(2) 1.5(1) [11]
0, 0.49(2) 0.50(5) 0.50(1) [11]
o, 0.35(2) 0.33(1)
v 2.0(2) 2.4(5)
B, 1.50(9) 1.46(6)
B 0.9(1) 1.0(1)

anomalous scaling, not controlled by the free KPZ equation:
local regions pinned by the binding potential generate
anomalous scaling.

We have not been able to predict the value of v using the
same analytical considerations that yield v=1 in the com-
plete wetting (MN1) case, nor is it trivial to obtain v=1 for
multicritical complete wetting. It is nevertheless possible to
conclude that in this latter case the exponent governing the
scaling of the interface slopes is less than unity, sf—s2~|a
—a,|Ps, in agreement with the value 8,~0.75 obtained. There
is numeric evidence that the slopes actually scale with S,
=3, for both critical wetting and multicritical complete wet-
ting (paths 5 and 4 of Fig. 2, respectively), a result that
violates naive scaling. In effect, dimensional analysis de-
mands that s*—s scales as |a—a "9, { being the rough-
ness exponent of the free KPZ [23]. This is obeyed at the
complete wetting transition, and indeed was used to derive
v=1 in MN1 [7], but does not hold for critical wetting nor
for multicritical complete wetting.

The cause of the deviation from standard scaling can be
sought in the interfacial profiles shown in Fig. 8. For critical
and multicritical wetting, patches of free KPZ interfaces
[n(x)=0] are separated by regions of sites that lie in the
potential well, plausibly hindering the standard KPZ scaling
from setting in gradually as the tricritical point is ap-
proached. This is in contrast to typical interfacial profiles for
nonequilibrium complete wetting (MN1) where no potential
well is at play.

According to a recent self-consistent, mean-field approxi-
mation to Eq. (5) three different scaling regimes of critical
behavior for the surface order parameter can be distinguished
[10]. The first two are of Gaussian type, while the third one
is a highly nontrivial strong-fluctuating regime. This rich
structure is completely washed out by fluctuations in one-
dimensional systems, where a unique and universal scaling
regime emerges. Moreover, we have verified numerically
that in the one-dimensional system moments of arbitrary or-
der scale as (n) itself, as happens in other Langevin equa-
tions with multiplicative noise [9]. The fact that the numeri-
cal values of the exponents are changed is not surprising at
all, given the presence of severe fluctuations in one dimen-
sion but what is more striking is that out of the three regimes
appearing in the mean-field approach, only one survives.
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A possible explanation for such an abrupt change might
come from a recent claim that the strong-coupling renormal-
ization group fixed point of the KPZ dynamics is essentially
different above and below d=2 [24]. This point remains to
be further studied, as well as some other aspects of nonequi-
librium critical wetting including its subtle relation to its
equilibrium counterpart (signaled by the coincidence of some
exponents), and the possible existence of various nonuniver-
sal scaling regimes in higher dimensions. It also stands as a
main experimental challenge to observe in the laboratory the
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phenomenology reported on here and in previous theoretical
works of nonequilibrium wetting.
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